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ABSTRACT

It is well known the notion of overdetermined finite linear system and its solution in
the sense of the least squares method (see for example [1], [7] or [8]). In [5] we
presented the gradient method for overdetermined finite linear systems and in [6] we
made the comparative efficiencies of the least square method and the gradient method
for finite overdetermined linear systems. In [3] we considered the notion of overdeter-
mines infinite linear system and its solution in the sense of the least squares method.
In [4] we showed the complex variant of this result. The purpose of this paper is to
extend the classical gradient method to overdetermined infinite linear systems.

Keywords: gradient method, least squares method, infinite linear systems, overdeter-
mined infinite linear systems, space l2

1 Introduction

Let z = (zi)i∈N be a sequence of real numbers. We

remember the real Hilbert space l2 = {z |
∞∑
i=0

z2i is

finite}, with the standard scalar product < z, t >∞=
∞∑
i=0

ziti, where z = (zi)i∈N ∈ l2 and t = (ti)i∈N ∈ l2.

We receive the norm of z ∈ l2 by the formula ∥z∥∞ =

√
< z, z >∞ =

√√√√ ∞∑
i=0

z2i . The elements of the space

l2 we call vectors. We have z = t iff zi = ti for all
i ∈ N.

Next we will consider the vectors z = (zi)i∈N ∈
l2 like column matrices. We take the transpose of z,
denoted by zT , as a row matrix. Now we define for
z, t ∈ l2 the product of the row matrix zT and the

column matrix t by the formula zT · t =
∞∑
i=0

ziti. So

< z, t >∞= zT · t, i.e. the scalar product of two
vectors can be obtained as a matrix product.

Let us consider for j = 1, n the column vec-
tors aj = (aij)i∈N ∈ l2. Using these vectors we
can form the infinite matrix A = (a1a2 . . . an) =
(aij)i∈N,j=1,n with infinite, but numerable rows and
with finite number of columns.

Next we extend in natural and similar way the usual
matrix operations from finite matrices to infinite ma-
trices. We define the product of the matrix A with the
finite column matrix x = (x1x2 . . . xn)

T ∈ Rn by
A · x = c, where c = (c0c1 . . . cn . . . )

T is an infi-

nite column matrix with elements ci =
n∑

j=1

aij · xj

for all i ∈ N. The transpose of the matrix A is AT =
aT1
aT2
...
aTn

 = (aji)j∈1,n,i∈N, i.e. a matrix with finite

number of rows and infinite, but numerable columns.
We define the product of the matrix AT with the col-
umn matrix z ∈ l2 as AT · z = (d1d2 . . . dn)

T ∈ Rn,

where dj =
∞∑
i=0

aji · zi for all j = 1, n. Because

aj ∈ l2 and z ∈ l2 we get dj = aTj · z =< aj , z >∞∈
R for every j = 1, n. We define the matrix product

AT · A = (gjk)j,k=1,n, where gjk =
∞∑
i=0

aji · aik for

j, k = 1, n. We mention that there exist the real num-
bers gjk, because gjk = aTj · ak =< aj , ak >∞∈ R
and AT · A is a finite matrix with n rows and n
columns.

Now we are able to define the overdetermined infi-
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nite linear system:



a01x1 + a02x2 + . . .+ a0nxn = b0
a11x1 + a12x2 + . . .+ a1nxn = b1
...
am1x1 + am2x2 + . . .+ amnxn = bm
...

(1)

where x1, x2, . . . , xn ∈ R are the unknowns of the
linear system and the free term is b = (bi)i∈N ∈
l2. We can take also the matrix form A · x = b,
where x = (x1, x2, . . . , xn)

T ∈ Rn. We say that
x∗ = (x∗

1x
∗
2 . . . x

∗
n)

T ∈ Rn is a solution of the
overdetermined infinite linear system (1), if we have
A · x∗ = b. We can observe immediately that the sys-
tem generally doesn’t have solution. In order to ob-
tain a solution for the system (1), first we build the
functions g : Rn → l2, g(x) = A · x − b and
f : Rn → R, f(x) = ∥g(x)∥2∞ = ∥A · x − b∥2∞
like in the case of the least squares approach. The
above presented functions are well defined, because

A · x − b =

n∑
j=1

xj · aj − b ∈ l2. We consider such

array x = (x1x2 . . . xn)
T ∈ Rn for which the func-

tion f takes the minimal value. The array x ∈ Rn,
which minimizes the function f, it is accepted like the
solution of the overdetermined infinite linear system
A · x = b in the sense of the least squares method.

In [3] we showed the following result: if (AT ·A) ·
x = AT · b, then ∥A · x − b∥∞ ≤ ∥A · x − b∥∞
for all x ∈ Rn. We mention that AT · A is a fi-
nite, well defined matrix of order n, so the system
(AT · A) · x = AT · b is a finite linear system, which
can be solved using the numerical methods of linear
algebra. In [4] we presented the complex variant of
this result. In [5] we realized the extension of the
gradient method for finite overdetermined linear sys-
tems. In [6] we made the comparative efficiencies of
the least square method and the gradient method for
finite overdetermined linear systems.

2 Main part

The aim of this paper is to show the gradient
method for the function f in order to obtain a mini-
mal point x ∈ Rn. We consider x like a solution of the
system (1) in the sense of the least squares approach.

First of all we must calculate the gradient of the
function f : Rn → R, f(x) = ∥A · x − b∥2∞ =
∞∑
i=0

(

n∑
j=1

aij · xj − bi)
2, which is a quadratic form in

the unknowns x1, x2, . . . , xn. We have the following
calculus of gradient:

gradf(x) =



∂f

∂x1
(x)

∂f

∂x2
(x)

...
∂f

∂xn
(x)


=



∞∑
i=0

2 ·
 n∑

j=1

aijxj − bi

 · ai1


∞∑
i=0

2 ·
 n∑

j=1

aijxj − bi

 · ai2


...

∞∑
i=0

2 ·
 n∑

j=1

aijxj − bi

 · ain




=

= 2 ·AT · (A · x− b).

Let us choose x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn the

start point for the gradient method, and we suppose
that we determined the point xk = (xk

1 , x
k
2 , . . . , x

k
n) ∈

Rn and we want to find the next point xk+1 =
(xk+1

1 , xk+1
2 , . . . , xk+1

n ) ∈ Rn. Let Fk : [0,+∞) →
R, Fk(t) = f(xk − t · gradf(xk)) be such function,
for which we calculate the value tk ∈ [0,+∞) in or-
der to obtain the minimal value of the function Fk in
the point tk. We have:

Fk(t) = ∥A · (xk − t · gradf(xk))− b∥2∞ =

= ∥(A · xk − b)− t ·A · gradf(xk)∥2∞ =

= ∥g(xk)− t ·A · gradf(xk)∥2∞ =

=
∞∑
i=0

gi(xk)− t ·
n∑

j=1

(
aij ·

∂f

∂xj
(xk)

)2

.

We calculate:

F ′
k(t) =

∞∑
i=0

2 ·

gi(xk)− t ·
n∑

j=1

(
aij ·

∂f

∂xj
(xk)

)
·(−1) ·

 n∑
j=1

(
aij ·

∂f

∂xj
(xk)

) .

From the equation F ′
k(tk) = 0 we get:

tk =

∑∞
i=0

[
gi(x

k) ·
∑n

j=1

(
aij · ∂f

∂xj
(xk)

)]
∑∞

i=0

[∑n
j=1

(
aij · ∂f

∂xj
(xk)

)]2
We denote for every i ∈ N with a∗i =
(ai1, ai2, . . . , ain) the rows of the matrix A and with
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< ·, · >n the Euclidean scalar product on Rn. Then:

tk =

∑∞
i=0

[
gi(x

k)· < a∗i , gradf(xk) >n

]∑∞
i=0 [< a∗i , gradf(xk) >n]

2 =

=
< g(xk), A · gradf(xk) >∞

< A · gradf(xk), A · gradf(xk) >∞
=

=
< A · xk − b, A · gradf(xk) >∞

< A · gradf(xk), A · gradf(xk) >∞

We can substitute in this last formula gradf(xk) by
2 ·AT · (A · xk − b), and the scalar 2 we take from the
scalar product. We can observe, that tk ≥ 0, and we
denote:

αk =
< A · xk − b, A ·AT · (A · xk − b) >∞

< A ·AT · (A · xk − b), A ·AT · (A · xk − b) >∞

Hence the next point with the gradient method we ob-
tain by the formula:

xk+1 = xk − tk · gradf(xk) =

= xk − 1

2
· αk · 2[AT · (A · xk − b)] =

= xk − αk ·AT · (A · xk − b)

We mention that the order of convergence of this
method we will study in a next paper.
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Mureş, Romania, 2010, Volume 7 (XXIV), New
Series, Number 1, pp. 24-26, Published by Editura
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