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ABSTRACT

It is well known the notion of overdetermined finite linear system and its solution in
the sense of the least squares method (see for example [1], [7] or [8]). In [5] we
presented the gradient method for overdetermined finite linear systems and in [6] we
made the comparative efficiencies of the least square method and the gradient method
for finite overdetermined linear systems. In [3 ] we considered the notion of overdeter-
mines infinite linear system and its solution in the sense of the least squares method.
In [4] we showed the complex variant of this result. The purpose of this paper is to
extend the classical gradient method to overdetermined infinite linear systems.
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1 Introduction

Let 2 = (2;);en be a sequence of real numbers. We

o
remember the real Hilbert space [? = {z | Z 22 is

i=0
finite}, with the standard scalar product < z,t >,,=
o0

Z zit;, where 2 = (2)ien € 12 and t = (t;)ien € 12
i=0
We receive the norm of z € [? by the formula ||z =
o0

V<22 >0 = Z 2. The elements of the space
i=0
12 we call vectors. We have z = t iff z; = t; for all
i€ N.

Next we will consider the vectors z = (z;)ien €
12 like column matrices. We take the transpose of z,
denoted by 2T, as a row matrix. Now we define for

z,t € [? the product of the row matrix z” and the
oo

column matrix ¢ by the formula 27 - ¢ = Z ziti. So
i=0

< z,t >eo= 2% - t, ie. the scalar product of two

vectors can be obtained as a matrix product.

Let us consider for 5 = 1,n the column vec-
tors a; = (aij)ien € I2. Using these vectors we
can form the infinite matrix A = (aq1az...a,) =

(@ij)ien,j—17 With infinite, but numerable rows and
with finite number of columns.

Next we extend in natural and similar way the usual
matrix operations from finite matrices to infinite ma-
trices. We define the product of the matrix A with the
finite column matrix z = (x123... xn)T € R” by
A-x = ¢, where ¢ = (cpcy...cp...)7 is an infi-

n

nite column matrix with elements ¢; = g Qij - T

i=1
for all i € N. The transpose of the matrix A is AT =
aj
a3 . o
= (aji)jeTm.ien» -6 a matrix with finite
ol

n
number of rows and infinite, but numerable columns.

We define the product of the matrix A” with the col-
umn matrix z € (% as AT - z = (dydy ... d,)T € R™,

where d; = Zaﬁ - z; for all j = 1,n. Because

i=0
aj €Pandz € Pwegetd; =al -z =<a;,z >€

R for every j = 1,n. We define the matrix product

AT - A = (gjk); p=1m> Where g = Zaji - ajy, for
i=0

7,k = 1,n. We mention that there exist the real num-

bers gjx, because g, = a;f car =< aj,a >€ R

and AT . A is a finite matrix with n rows and n

columns.
Now we are able to define the overdetermined infi-



nite linear system:

+ aonTn = bO
+ @1pTn = bl

ag1x1 + apgaxs + ...
a11r1 +ajpxrs + ...

(D

A1Z1 + AT + ...+ Ay = b

where z1,29,...,x2, € R are the unknowns of the
linear system and the free term is b = (b;)ieny €
2. We can take also the matrix form A - x = b,
where * = (21,79,...,2,)7 € R™. We say that
r* = (z323...25)T € R" is a solution of the
overdetermined infinite linear system (1), if we have
A - x* = b. We can observe immediately that the sys-
tem generally doesn’t have solution. In order to ob-
tain a solution for the system (1), first we build the
functions g : R® — [ g(x) = A-x — b and
fiRY 5 R f@) = g2 = [A-o - b|2
like in the case of the least squares approach. The
above presented functions are well defined, because
n

A-x—b= ij ~a; —b e 12. We consider such
j=1

array T = (T1T2...T,)" € R™ for which the func-

tion f takes the minimal value. The array * € R",

which minimizes the function f, it is accepted like the

solution of the overdetermined infinite linear system

A -z = bin the sense of the least squares method.

In [3] we showed the following result: if (AT - A) -
T =AT . b then |[A -7 — b|loo < |4 2 — b
for all z € R"™. We mention that AT - A is a fi-
nite, well defined matrix of order n, so the system
(AT - A) -7 = AT - bis a finite linear system, which
can be solved using the numerical methods of linear
algebra. In [4] we presented the complex variant of
this result. In [5] we realized the extension of the
gradient method for finite overdetermined linear sys-
tems. In [6] we made the comparative efficiencies of
the least square method and the gradient method for
finite overdetermined linear systems.

2 Main part

The aim of this paper is to show the gradient
method for the function f in order to obtain a mini-
mal point T € R™. We consider Z like a solution of the
system (1) in the sense of the least squares approach.

First of all we must calculate the gradient of the
function f:R* 5 R, f(z) = |[A-2 b2 =

(> )
=0 j=1
the unknowns z1, s, ...,

calculus of gradient:

, which is a quadratic form in

Z,. We have the following

gradf(z) = %
6xn

-

s
Il
o

n

I

E Qi L5 — bz a;2 —
=0
o [ n 1
§ 2. § ATy — 04 [£27)
=0

bl
)
)

= 2~AT'(A.’E_b).

Let us choose 20 = (29,29,...,2%) € R™ the

start point for the gradient method, and we suppose
that we determined the point 2% = (2%, 25,... 2%) ¢

R” and we want to find the next point zF+! =
(:LJIC+1 x]2€+1’ . k-‘rl) c R™. Let Fk . [O +OO)
R, Fy(t) = f(x* —t - gradf(z*)) be such function,

for which we calculate the value t;, € [0, +00) in or-
der to obtain the minimal value of the function F}. in
the point ¢;. We have:

Fi(t) = ||A- (2" —t- gradf(z¥)) — b|& =
= [[(A-a"—b)—t- A gradf(z")|% =
lg(a®) —t- A gradf(«¥)||% =
2
= —t- aj - ))

We calculate:

22. gi(z") —t-zn: (aij . (%C(ﬂ))

g(”% )

From the equation F}(t;) = 0 we get:
Yizo [gz(xk) : Z;‘L:I (aij : a%’:.(xk))}
S0 S (- 2 @)]

We denote for every ¢ € N with af =
(ai1, @iz, - - ., ain) the rows of the matrix A and with

tr =



< -,- >, the Euclidean scalar product on R™. Then:

Yo [gi(a): <az, gradf(a*) >n]
Yo [< af, gradf(ak) >’
<g(a*), A gradf(a") >

< A- gradf(z%), A- gradf(z%) >

<A-aF—b A gradf(z*) >

< A- gradf(z¥), A gradf(zF) >

We can substitute in this last formula gradf(z*) by

2- AT . (A- 2% —b), and the scalar 2 we take from the

scalar product. We can observe, that ¢, > 0, and we
denote:

ty, =

<A-zk—b A AT (A 2F —b) >

T AAT (A-aF —0),A-AT - (A-2F —b) >
Hence the next point with the gradient method we ob-
tain by the formula:

2 = 2R 1y gradf(a”) =
1
= xk—i-ak-Q[AT~(A-xk—b)]:
= 2 —ap AT (A28 —b)

We mention that the order of convergence of this
method we will study in a next paper.
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